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Abstract—Automatic speech recognition and understanding for 
air traffic control (ATC) communication has been extensively 
studied in the approach and en-route environment. SESAR2020’s 
Solution 97.2 is one of the first European attempts to analyze 
recognition rates and human performance of air traffic 
controllers (ATCos) in simulated tower and ground 
environments. Three validation exercises with 22 ATCos from 
four different European air navigation service providers were 
conducted in Germany, Norway, and Italy. The validated 
artificial intelligence-based prototypes of Assistant Based Speech 
Recognition systems (ABSR) supported ATCos fulfilling tasks in 
a ground and tower environment as well as multiple remote 
tower environment, respectively. Thus, in any relevant ATC 
display, (1) recognized callsigns of ATCo utterances have been 
highlighted, (2) fully recognized commands were shown, and (3) 
the ATCo was able to manually manipulate the ABSR output if 
needed or the output was automatically accepted by the ATC 
system otherwise. This paper evaluates callsign and command 
recognition rates as well as ATCo performance. It compares the 
results for the three validation exercises: a callsign recognition 
rate of 81-98%, a command recognition rate of 65-91%, and a 
slight reduction in ATCo workload on a low workload level. 

Keywords—Air Traffic Controller; Tower; Ground; Assistant 
Based Speech Recognition; Automatic Speech Recognition; 
Automatic Speech Understanding; Solution 97.2 

I.  INTRODUCTION 
Air traffic controllers (ATCos) in the tower and ground 

environment still mainly issue time-critical instructions to 
pilots via radio telephony with voice utterances. The ATCos 
normally also note down the content of their verbal 
instructions. The paper flight strips for such notes have 
meanwhile been replaced by electronic flight strip systems [1] 
within the major air navigation service providers (ANSPs). 
However, the chain of actions and inputs has not been 
completely digitized yet. ATCos still need to manually enter 
their instruction content with mouse or keyboard into the 
electronic systems. This causes unnecessary workload for the 
ATCos as the instruction has already been expressed verbally 
[2]. Thus, ATCos could be supported by automatic speech 

recognition and understanding (ASRU) if their spoken words 
are recognized, if the resulting word sequences are understood, 
and if the semantics are entered into the right electronic air 
traffic control (ATC) systems, to feed a sequence of succeeding 
applications. 

Similar ASRU system prototypes have already been 
developed for the following ATC domains: approach [3],[4], 
en-route [5], and apron [6]. Such systems consider relevant 
accessible context information from an assistant system, e.g., 
use the callsign information from surveillance data to improve 
callsign recognition performance or check plausibility of 
recognition results due to flight status information from 
electronic ATC systems. Those ASRU systems are, therefore, 
called assistant based speech recognition (ABSR) systems [7]. 
ABSR system prototypes in the above-mentioned ATC 
domains showed a reduction of ATCo workload [8] and an 
increase in ATM efficiency [7]. 

Hence, it makes sense to fill the gap and develop an ABSR 
system also for the tower and ground environment [9]. ‘Tower 
environment’ includes remote towers and even multiple remote 
towers, i.e., the ASRU system must recognize and understand 
ATCo utterances for up to three different airports at the same 
time (note: as there is only one ATC frequency in the multiple 
remote tower environment, the ATC utterances enter the ABSR 
system sequentially, i.e., there are not multiple utterances at the 
same time to be handled by the ABSR system). Instructions in 
the tower environment for example encompass runway 
clearances, instructions for the ground environment include 
taxi, startup, pushback and ATC clearances. These ABSR 
prototype developments happened in the course of the 
SESAR2020 wave 2 project “Digital Tower Technologies 
(DTT)” [10] and more specifically in its solution 97.2 on 
automatic speech recognition (ASR). 

Three ABSR prototypes comprising of speech-to-text 
(STT) and text-to-concept (TTC) modules for three different 
validation platforms have been developed and tested in 
validation exercises, as shown in TABLE I. They aimed and 
claimed to reach Technology Readiness Level 4. 



 

 

TABLE I.  ABSR PROTOTYPES, PLATFORMS, AND VALIDATIONS 

 LIT NOR BUL 

Organizations DLR Indra Navia, 
HungaroControl Leonardo 

STT 
based on 

KALDI: Idiap, 
Switzerland 

HungaroControl 
(voice system 
from Indra) 

based on KALDI: 
Leonardo 

Audio 
Recording 

16 kHz 
mono 

8 kHz 
mono 

8 kHz 
mono 

TTC DLR HungaroControl Leonardo 

Human 
Machine 
Interface 

DLR Electronic 
Flight Strip 

System 
Prototype 

Indra Navia 
InNOVA 
System 

Leonardo Lead In 
Sky Ground 

Working Position, 
A-SMGCS 

Environment 

Multiple Remote 
Tower and 

Ground (three 
airports for 
Lithuania) 

Remote Tower 
(Norwegian 

airports) 

Tower and Ground 
(Sofia airport from 

Bulgaria) 

Validation 
Place and 

Date 

Braunschweig, 
Germany, 

quarter 1, 2022 

Asker, 
Norway, 

quarter 4, 2021 

Rome, 
Italy, 

quarter 2, 2022 

ATCos 
(Validation 

Participants) 

10 ATCos: 
5 from ON 
(Lithuania), 
5 from ACG 

(Austria) 

6 ATCos from 
HungaroControl 

(Hungary) 

6 ATCos from 
ENAV (Italy) 

 
This paper consists of related work with respect to speech 

understanding, i.e., the extraction of ATC concepts such as 
callsigns and command types plus values from ATC utterance 
transcriptions in Section II. Section III outlines the prototypes 
for tower/ground ABSR systems with relevant human machine 
interfaces. The three validation exercises with ATCos and the 
study setups for data recording are explained in Section IV. 
Section V compares results on speech understanding quality as 
well as ATCos’ performance and feedback from the ATCos of 
the three validation exercises. Section VI presents the 
conclusions and discusses future work. 

II. RELATED WORK ON SPEECH UNDERSTANDING 

A. History of ASRU in ATC 
At the beginning of this century, ASR systems in ATC 

targeted to reduce or replace simulation pilots and to advance 
simulation infrastructure [11],[12] Also, the estimation of 
ATCo workload has been derived from ASR data [13],[14]. 
Later, the project AcListant-Strips® explored ATCo support 
for the simulated Düsseldorf approach environment through 
automatically maintaining aircraft radar labels with a first 
ABSR prototype [2]. ATCos’ workload for manually 
maintaining the labels could be reduced up to a factor of three. 
Subsequently, ATCos had more time for their primary task – 
controlling air traffic. As result, actual aircraft trajectories in 
the terminal maneuvering area were more efficient, yielding 
savings of more than 100 kg CO2 per flight [7]. 

The SESAR exploratory research project MALORCA 
investigated machine learning algorithms to quickly adapt an 
ABSR system to a new ATC environment with the use cases of 
Vienna and Prague approach on operational ATCo speech data 
[4]. The prediction of callsigns and commands via machine 
learning for various ATC environments such as approach [15] 
and multiple remote tower [16] helped to reduce the 

recognition error rates on word level and especially on 
semantic level [17] through command extraction algorithms 
[18]. Applications such as callsign highlighting [19] and radar 
label maintenance have been studied with their effect on ATCo 
workload [8]. ABSR has also been advanced for apron/ground 
control at a major European airport to support ATCos and 
simulation pilots [6]. With more training data [20], the 
recognition rates further improved and the applications that use 
the ASRU output also advanced. Thus, more functions such as 
pilot weather report extraction [21], detection of runway 
incursions [22] and detection of readback errors on the ground 
[23] and in the air [5] have been developed. 

The latter application has been implemented in the course 
of the SESAR exploratory research project HAAWAII [24], 
[25]. En-route utterances from both ATCo and pilots [26] in 
Icelandic en-route airspace were automatically recognized 
(STT), annotated (TTC), grouped, and analyzed for potential 
readback errors [5]. This ASRU prototype also ran in the 
operational ATC center of the Icelandic ANSP for 
demonstration purposes. As a benchmark, word error rates of 
below 4% for ATCos and 7-11% for pilots, callsign recognition 
error rates below 2%, and command recognition error rates 
below 7% were achieved, e.g., in HAAWAII on noisy data 
from the operational environment. These numbers were 
validated in an ASRU setup that goes far beyond competitive 
systems, i.e., covers a wider range of command types, 
recognizes command qualifiers and conditions [27], works well 
on unseen operational data in the given use cases, and offers 
well-appreciated ABSR applications as ATCo feedback shows. 

B. Formats for Speech Understanding in Tower Environment 
The first step in ASRU is STT, i.e., the transcription. A set 

of rules for the transcription of ATC utterances has been agreed 
[28] and was also used for the three prototypes of this paper. 
The second step in ASRU is TTC [29] also called annotation 
or “spoken instruction understanding” [30]. Almost two dozen 
stakeholders such as ANSPs and air traffic management 
(ATM) system providers agreed on an ontology, i.e., a set of 
rules of how to annotate transcribed ATC communication, in 
the SESAR industrial research project PJ.16-W1-04-ASR [31]. 
The rules were extended in this project (Solution 97.2) and 
especially in the HAAWAII project [5]. As an example, the 
transcription “air france one two victor now taxi via alfa hold 
short of runway one three” would be annotated as “AFR12V 
TAXI VIA A, AFR12V HOLD_SHORT RW13” given 
configuration files for airspace/airport topology entities. All 
three prototypes of this paper stuck to this ontology. They 
partly used machine learning techniques to, e.g., predict 
relevant ATC concepts that are expected in the following ATC 
utterances. Thus, the three ABSR prototypes of this paper used 
the same basics, but have very different background in the 
maturity of implementation, different amount of training data, 
and prototype dependent usage of ABSR output for ATC 
applications. 

III. ASSISTANT BASED SPEECH RECOGNITION SYSTEMS FOR 
AERODROME ENVIRONMENTS 

This section describes the ABSR prototypes LIT (DLR and 
Idiap), NOR (Indra Navia / HungaroControl), and BUL 
(Leonardo) with inputs and outputs. 



 

 

A. LIT: Multiple Remote Tower and Ground ABSR Prototype 
The ABSR system received a continuous live audio stream 

via voice over IP, also transmitted to the simulation pilots as 
soon as the ATCo pressed the push-to-talk button until 
releasing it again. For the ABSR system training phase, dozens 
of hours of publicly available ATC speech datasets were used 
to train acoustic model, language model, command prediction 
model, and command extraction model. These generic models 
were adapted by only 2,500 manually transcribed and 
annotated utterances, i.e., 3.6 h from ON and 0.9 h from ACG 
ATCos’ speech from the specific multiple remote tower setup. 

The STT engine of Idiap continuously sent the recognized 
words from the audio stream in a JavaScript Object Notation 
(JSON) format to the TTC module of DLR. The TTC module 
also received surveillance data from the three remote airports 
(called Vilnius, Kaunas, and Palanga) to know the currently 
available aircraft callsigns and their positions. The TTC 
module automatically extracted the callsign from the word 
sequence as soon as enough relevant words have been provided 
by STT. The callsign recognition process based on surveillance 
data benefited from callsign boosting on STT level and 
supported, therefore, deviations of ATCo verbalizations within 
and outside of the International Civil Aviation Organization 
(ICAO) phraseology on semantic TTC level. 

If further recognized words were received by the TTC 
module, the command recognition algorithm automatically 
extracted up to 63 different implemented command types with 
their values, units, qualifiers, and conditions even in utterances 
with instructions to more than one aircraft according to the 
ATC annotation ontology. This process was predominantly 
based on keyword spotting (“taxi”, “lineup”), but also worked 
robustly if just the name of the taxiway or runway has been 
uttered or recognized (just “alfa” or “one three right”). This 
functionality was working for three remote airports at the same 
time. The ABSR output was then sent to the prototypic 
electronic flight strip system for callsign highlighting and flight 
status changes (see Figure 1), command presentation with 
correction option, and displaying the complete STT and TTC 
output in the outside view. 

 
Figure 1.  Callsign highlighting (white box around “BMI478”) and 

automatically recognized flight status change from voice utterance (dark green 
“TAXI” via “C”) on the electronic flight strip display’s ground bay as well as 

earlier clearances (light green STARTUP, PUSHBACK). 

B. NOR: Remote Tower ABSR Prototype 
The ABSR system received a real-time transport protocol 

audio stream from the Garex voice communications control 
system. The same audio stream was also transmitted to the 
simulation pilots. The speech recognition module that based on 
a predefined US English language and acoustic model was 
responsible for processing the audio stream from the operator 
to identify any spoken words after the utterance ended. 
Relevant commands were then identified in the word sequences 
and were sent to the InNOVA system. The system’s human 
machine interface (HMI) gave the operator a situational 

overview through the use of traffic situation displays and flight 
lists. Normally, the ATCo would have to manually enter any 
commands (such as clearances) into the system after 
communication with the pilot. When a command was 
recognized and received from the ASRU module, the relevant 
callsign was highlighted, and the command input was 
automatically applied in InNova if not rejected by the ATCo 
(see Figure 2). Up to 21 different command types have been 
covered for this environment. 

 
Figure 2.  Callsign highlighting (green box around “WIF864”) and 

recognized flight status change (green “LINEUP” for green runway “07”) in a 
speech recognition acknowledgement window. 

C. BUL: Tower and Ground ABSR Prototype 
The ABSR system received the audio input via push-to-talk 

functionality and Mumble software with the ABSR component. 
The ABSR could also be activated without forwarding the 
utterance to the simulation pilots, e.g., if only certain callsign 
highlighting was intended. The ABSR prototype was integrated 
into the Lead In Sky product and infrastructure (see Figure 3). 
It was based on a Java widget for audio acquisition, coding and 
transmission, on widely available generic English language 
corpora, on KALDI for the STT conversion after an utterance 
was finally spoken, and on a custom-built set of python-coded 
blocks for the TTC extractor. The ATC concept extraction of 
the tested implementation covered six different command types 
due to limitations of the simulation platform. More types and 
qualifiers are already implemented, but were not part of this 
validation trials. The TTC conversion supported one command 
per utterance and relied on ATCos sticking to ICAO 
phraseology. The recognition phonetic model was trained 
offline and prior to simulations. 

 
Figure 3.  Speech recognition recording window (top middle) with airport 

surface map and flight information windows. 

Model training was carried out via use of publicly available 
corpora and a number of sessions with ATCos based on a 
reduced version of the ATC annotation ontology for a total of 
about 400 utterances equating to 25 minutes of actual speech. 
Context-based data consisted of a list of active callsigns 
obtained from the Lead In Sky flight data processor and its 
communication infrastructure. The list was constantly updated 
in order to improve recognition performance. The ABSR 
output was presented to the ATCo in terms of highlighted 
callsigns and recognized commands in the HMI. 



 

 

IV. VALIDATION EXERCISES WITH TOWER ATCOS 
This section explains the validation setup, simulation run 

conditions, and participating ATCos of LIT, NOR, and BUL. 
The envisaged questionnaires for all exercises covered the 
topics workload, situation awareness, acceptance/job 
satisfaction, usability, callsign and command recognition 
performance, interaction, and overall ASRU feedback. 

A. LIT: Multiple Remote Tower and Ground Environment 
The hardware setup of the LIT validation exercise is shown 

in Figure 4. It consists of three horizontal rows of monitors for 
the outside view, three radar screens, and the electronic flight 
strip system with one column for each of the three airports. The 
validation took a full day for each of the five Lithuanian and 
five Austrian tower ATCos, i.e., 10 days in total. The briefing 
was followed by a one-hour training run to familiarize the 
ATCos with both simulation conditions: baseline without any 
ABSR support and solution with ABSR support. 50% of the 
ATCos started with the baseline run and 50% started with the 
solution run to consider trainings effects. In the baseline 
condition, the ATCo needed to enter all commands with an 
electronic pen. 

In the solution condition, the ABSR system automatically 
entered the recognized commands and the ATCo only had to 
correct, if something was wrong. After ten seconds without any 
corrections, the dark green command highlighting turned to 
light green as in the manual input condition and the command 
was accepted by the ATC system. The ATCos should use the 
same phraseology including deviations from ICAO 
phraseology as they use in their daily life. The two simulation 
runs with both simulation conditions took one hour each and 
were followed by various questionnaires and a debriefing. The 
validation setup is also visualized in [32]. 

 
Figure 4.  Multiple remote tower and ground environment at DLR 

Braunschweig’s Remote Tower Lab (LIT). 

All ATCo utterances with their timings, automatic 
transcriptions, and automatic annotations have been recorded 
along with the questionnaire answers. All automatic 
transcriptions and automatic annotations have been manually 
checked and corrected by ATC-ASRU experts in order to 
calculate error rates and recognition rates on word level and on 
semantic level. 

B. NOR: Remote Tower Environment 
The NOR validation was performed in a remote tower 

simulator setting with six Hungarian ATCos (see Figure 5) as 
also visualized in [33]. Each ATCo performed three simulation 
runs in a single remote tower environment with a different 
remote airport in all three runs. However, the ABSR prototype 
was optimized for laboratory use for the technical validation, 
i.e., to be used with a predefined set of clearances. ATCos were 
requested to stick to the rather simple phraseology to make sure 
that the system can update the flight strips according to the 
recognized speech. 

 
Figure 5.  Remote tower environment of Indra (NOR). 

The baseline runs without any ABSR system were 
conducted earlier in a different multiple remote tower 
environment. Measures of workload and situation awareness 
given a baseline-solution comparison were therefore limited. 
To be able to analyze the performance of the ABSR prototype 
after the validation, several key parameters were recorded: (1) 
Timing of ATCo voice transmission, ABSR processing time, 
HMI update and operator input, (2) recognized callsign and 
command, (3) the ABSR’s confidence level of the recognition, 
and (4) whether the ATCo accepted or rejected the recognized 
callsign and command. In addition, the ATCo voice 
transmissions were recorded, and a manual check of the 
automatic word-by-word transcription was performed to 
support post-exercise analysis. 

C. BUL: Tower and Ground Environment 
The BUL validation in a simulated tower and ground 

environment as shown in Figure 6 was run with six ATCos 
from different parts of Italy [34]. Two ATCos were active at 
the same time: one as tower ATCo, the other as ground ATCo.  

 
Figure 6.  Simulated ground and tower environment at Leonardo Roma 

facilities (BUL). 

A complete training day was held before the validations. In 
total, there were three validation days with four 45 minutes 
simulation runs per day: a baseline and three solution runs – 
with all simulation run conditions always remaining in the 
same order leading to limited interpretability. 



 

 

Briefings, questionnaires, and debriefings were conducted 
accordingly. Captions were made of screens, audio, and 
instructed commands in order to generate annotated transcripts 
and command logs. 

V. RESULTS OF VALIDATION EXERCISES 

A. Speech Recognition and Understanding Performance 
The following tables summarize the quality of speech 

recognition and speech understanding performance. The 
reported numbers for LIT always contain baseline and solution 
runs with evaluation of recorded audio files, i.e., the numbers 
for offline recognition were evaluated on recorded files after 
the trials, the numbers for online recognition as shown in table 
footnotes were evaluated during the trials. NOR and BUL only 
report on utterances from the solution runs. The word error rate 
(WER) of the STT process, the number of words as well as 
number of utterances are shown in TABLE II.  

TABLE II.  OVERVIEW OF SPEECH RECOGNITION PERFORMANCE 

 LIT NOR BUL 

Word Error Rate 5.1% a - 16.9 % 

# Words uttered 38,820 - 3,632 

# Utterances 2,427 934 454 

a. When only analyzing the 1,232 utterances of the ten solution runs, the WER was just 4.4% (offline 
recognition mode). In online recognition mode the WER was 13.6% (9.8% for solution runs). 

WER is not calculated for NOR. These validation trials 
concentrated on more important metrics in the ATC context: 
callsign recognition performance, i.e., recognition, error, and 
rejection rates of the TTC process as shown in TABLE III.  

TABLE III.  OVERVIEW OF CALLSIGN UNDERSTANDING PERFORMANCE 

Callsign Recognition Performance b LIT NOR BUL 

Callsign Recognition Rate 98.4% c 81.2% 89.8% 

Callsign Error Rate 0.9% 7.8% 
10.2% 

Callsign Rejection Rate 0.7% 11.0% 

b. Restricted comparability of results due to different technical capabilities and ATCo briefings. 
c. In online recognition mode, the recognition rate was just 91.7%, i.e., 89.1% in baseline runs 

without ASRU and 94.2% in solution runs with ASRU support. 

The overall TTC rates in terms of the speech understanding 
process for complete ATC commands – core result for the 
ASRU performance – are shown in TABLE IV. This table lists 
the recognition/error/rejection rate on command level, as well 
as a recognition rate only for the command type, the number of 
commands, and the number of commands per utterance. 

TABLE IV.  OVERVIEW OF COMMAND UNDERSTANDING PERFORMANCE 

Command Recognition Performance LIT NOR BUL 

Command Recognition Rate 91.4% d 76.0% e 64.6% f 

Command Error Rate 4.5% - 5.1% 

Command Rejection Rate 5.0% - 35.4% 

Command Type Recognition Rate 94.0% 93.2% 75.9% 

# Commands Uttered 7,560 993 454 

# Commands per Utterance 3.11 1.06 1.00 

d. For LIT, a command is only considered correct if callsign, command type and command second 
type, value(s), unit, qualifier, and conditions were correct. When considering only the relevant 
command types that appeared at least 25 times during the validation, the command recognition 

rate reached 94.6% with a command recognition error rate of 3.5%. In online recognition mode, 
the recognition rate for all utterances was just 82.9% in solution runs with ASRU. However, the 
online recognition rate for commands that have also been displayed in the electronic flight strips 

was 89.4%. 
e.  For NOR, a command was considered correct if callsign, command type and command second 

type, and value were correct, i.e., unit, qualifier, and condition were not considered. 
f. For BUL, a command was considered correct if callsign, command type and qualifier were correct. 

B. ATCos’ Opinion on ABSR Performance 
For the LIT prototype, ATCos rated the recognition of 

callsigns as almost perfect with a mean value of around 9 out 
of 10 (see Figure 7). Considering only male ATCos or only the 
Austrian (ACG) ATCos led to mean ratings of close to scale 
maximum value 10. The recognition performance of ATC 
commands was perceived as good with a mean value of around 
7. The general quality of information presentation from ABSR 
was also rated to be at an acceptable level with a mean value of 
slightly beyond 7. It has to be noted that the command 
recognition and overall ABSR information displayed were 
rated much higher by the Lithuanian ATCos as compared to the 
Austrian ATCos. 

 
Figure 7.  Feedback on the perceived ABSR performance for understanding 

callsigns, commands, and level of displayed information (LIT). 

For the NOR prototype, Figure 8 shows ATCos’ perception 
of successful 1) callsign, 2) clearances and 3) other parameter 
understanding of a reduced set of commands and qualifiers, in 
accordance. According to the results, the system seemed to 
perform best with the callsign recognition (67% positive 
feedback), and the other parameters (67% positive feedback), 
followed by the clearance recognition (56% positive feedback).  

 
Figure 8.  Feedback on the perceived ABSR performance for understanding 

callsigns, clearances, and other parameters (NOR). 



 

 

It is important to highlight that practicing, experimenting 
and challenging the system by pronouncing a certain callsign 
differently or saying the wrong callsign intentionally happened 
often. These cases decrease the reliability of the results. 

For the BUL prototype, the perceived performance of 
callsign and command recognition and rejection rates was at 
least in the neutral range, but predominantly in the positive 
scale range (see Figure 9). 

 
Figure 9.  Feedback on the perceived ABSR performance with recognition 

and rejection rate of callsigns and commands (BUL). 

C. Latency of ABSR Output 
Basically, the latency of the ABSR prototypes was 

perceived as acceptable, but improvable. For the LIT 
prototype, ATCos rated the statement about timeliness of the 
ASR tool to be within acceptable limits with 7.5 on a scale 
from 1 to 10 (with 10=fully agree; 1=fully disagree). However, 
checking the ABSR output in the electronic flight strip display 
even with automatic acceptance after ten seconds slowed some 
ATCos down, because in the baseline runs, ATCos made 
entries simultaneously while speaking. Some ATCos judged 
the speed of ABSR output while speaking as sufficient, two 
ATCos wanted to have faster output. 

For the NOR prototype, 50% of ATCos gave positive 
feedback on the latency of ABSR output. ATCos also 
emphasized that the system must become faster, because they 
do not want to continuously check the system during work. For 
the BUL prototype with limited ASRU functionality, all 
ATCos found the latency of the ABSR system to be acceptable, 
i.e., rated the statement within the positive answer scale half. 

D. Differences in ATCo Utterances 
The used phraseology in practice and pronunciation of 

words seem to be different if ATCos know about an ASRU 
component supporting them. For the LIT prototype, ATCos 
were asked if they spoke differently in baseline and solution 
condition (in the latter being supported by ABSR). Three 
ATCos stated that they spoke less carefully in baseline runs, 
because only pilots needed to understand them. Similarly, two 
other ATCos said, they spoke closer to ICAO phraseology in 
solution runs as they were better supported then. This 
corresponds to the measured TTC performance which was 5% 
better in solution runs compared to baseline runs as reported in 
the footnotes of TABLE III. One study participant stated that 
ATCos automatically become more phraseology conform and 
that this is one of the greatest advantages of such an ASRU 

technology for safety already. However, some other ATCos 
stated that there was no difference in their speaking behavior. 

For the NOR prototype, five of six ATCos confirmed that 
they sometimes changed their pronunciation to make sure that 
the ABSR system will better understand uttered commands. 
For the BUL prototype, ATCos recommended not to use two 
keys for ABSR activation and for frequency communication, 
because this induced a further possible source of error, thus 
negatively affecting the recognition performance. ATCos also 
motivated to enhance the phraseology that is potentially being 
recognized by the ABSR system, which implicitly includes that 
ATCos also adapted their speaking behavior during the 
validation exercises. Hence, all ABSR prototypes showed the 
tendency to influence the style of ATCos’ utterances in a 
positive way regardless of any recognition rate. 

E. Feedback on Human Machine Interfaces 
The system usability score (SUS1) for the LIT prototype 

was 75, thus slightly better than the rating for the baseline 
system. The ten seconds-highlighting with automatic 
acceptance and the highlighting colors were liked most. Also, 
all ATCos of the BUL exercise gave feedback in the positive 
range regarding the system usability. For the NOR prototype, 
HMI usability (e.g., click on accept/reject) was regarded as 
user-friendly by the majority of the ATCos. 

F. ATCo Workload and Situation Awareness 
For the LIT and BUL exercise, some evidences were 

collected that such an ABSR system can contribute to a 
reduction of ATCo workload especially in higher TRLs as also 
mentioned by ATCos of the NOR exercise. According to the 
Bedford workload scale1 that ATCos rated once after each 
simulation run, there was no significant difference between the 
baseline and solution runs of LIT and BUL – for LIT, the 
solution rating was even slightly worse than for the baseline. 
However, for the instantaneous self-assessment of workload 
(ISA1) for LIT that was taken every five minutes during all 
simulation runs, the mental workload average slightly 
decreased in the solution runs compared to the baseline where 
there was no ABSR support. ABSR in the LIT prototype 
seemed to support maintaining situation awareness and 
workload of ATCos at an acceptable level with mean values of 
7.5 and beyond on a 10-point scale with 10 as the best value. 
Also, for BUL, all ATCOs rated situation awareness as either 
‘high’ or ‘perfect’ during solution runs. However, all air traffic 
scenarios had a rather low to medium traffic density, i.e., the 
workload levels were at a low level anyway. In the NOR 
exercise ATCos felt that during the baseline run they had the 
opportunity for “self-checking” their own input into the 
system. However, in the solution run, the feeling of checking 
themselves was lost as the system took over the input after they 
provided the clearance or instruction. Also, in the LIT exercise, 
there was a tendency to over-rely on automation when the 
ABSR worked fine. Hence, just as with many other highly 
automated solutions there might be positive as well as negative 
effects on situation awareness to be analyzed deeper. The 

                                                           
1 For further information on the human performance 
questionnaires, check https://ext.eurocontrol.int/ehp/ 



 

 

callsign highlighting function was much appreciated by ATCos 
of all three ABSR prototypes also to support situation 
awareness and reduce mental workload. The reduced search 
time for items in solution runs compared to the baseline was 
confirmed by the LIT ratings. 

G. ATCos Ratings on Usefulness, Confidence & Acceptance 
ATCos rated if the system was useful within the SATI1 

(SHAPE Automation Trust Index) questionnaire. For 
comparison reasons, the answers like “never”, “sometimes”, 
“often”, “always” have been converted to a numbered interval 
scale. For LIT, the confirmation ratio increases by 12% 
absolute when comparing baseline (58%) to solution runs 
(70%). For BUL, the confirmation ratio increases by 5% 
absolute when comparing baseline (75%) to solution (80%). 
For NOR, there is just the value of 47% available for solution. 
Hence, it is neither reasonable to directly compare the three 
results for the solution runs with the prototypes, nor to compare 
the baselines. The confidence in and the hypothetical 
acceptance of such a system in their daily-life controller 
working positions was answered rather differently by the 
ATCos for the different ABSR prototypes. For the LIT 
prototype, 80% of ATCos stated with 8 or more points on the 
scale from 1 to 10 that they would appreciate such an ABSR 
system in their normal workplace. For the NOR prototype, only 
one third of the ATCos stated that they could confidently work 
with the ABSR prototype. For the basic BUL prototype, the 
overall acceptance was predominantly rated with the second-
best option “high” on a seven-option scale. 

VI. SUMMARY AND OUTLOOK 

A. Summary of SESAR2020 Solution 97.2 Validation Results 
The technology of assistant based speech recognition and 

understanding has shown to be also feasible in an ATC 
environment for (multiple remote) tower and ground ATCo 
working positions in a laboratory environment. However, a list 
of recommendations on how to enhance aspects of the ABSR 
system have been identified. Very promising recognition rates 
for callsigns of 98% and for frequent commands of 94% with 
error rates for callsigns of below 1% and for commands below 
5% are possible to achieve in case of mature implementation at 
least in the offline mode even with very low amount of tower 
specific training data (LIT). However, the tested alternative 
prototypes (NOR, BUL) achieved callsign recognition rates of 
65% and command recognition rates of 81% as worst result. 
Hence, there is still improvement needed to achieve command 
recognition rates beyond 95% and command recognition error 
rates below 2.5% which have shown to significantly reduce 
ATCo workload in the en-route and approach environment. In 
general, ATCos were able to perform their ATC tasks when 
working with ABSR support. The positive results for system 
usability, acceptance and some workload measurements on a 
low workload level environment show the potential of ABSR 
in a (multiple remote) tower/ground environment – even if a 
row of other measurements do not show any significant 
differences between baseline and solution. The recorded data 
show that ATCos speak differently, i.e., closer to phraseology 
if being supported by ABSR (i.e., solution runs have higher 
command recognition rates than baseline runs; in the latter, the 
speech was analyzed as well, but the output was not shown to 

the ATCo). On the one hand, this might be because they get 
better support if recognition rates are higher, on the other hand, 
it might be due to the pure awareness of working with speech 
recognition in the background. If ATCos stick closer to the 
ICAO phraseology just due to the pure presence of an ABSR 
system, that could already be a safety feature. To summarize, 
the three validation exercises have shown potential of using 
ABSR system output. However, they also revealed relevant 
aspects to be considered for further enhancements. The 
quantitative and qualitative feedback of ATCos was motivating 
to go beyond technology readiness level 4 to offer the full 
potential of ABSR support to them. 

B. Outlook on Future Work 
The three described ABSR prototypes have identified 

different needs for improvements on different maturity levels. 
BUL needs to incorporate more context-based data, better train 
the phonetic models, and enlarge the coverage regarding 
different command types and elements of the ATC ontology. 
NOR needs to cover conditional and more non-standard 
clearances as well as improvement of callsign, command, and 
command type recognition error rates, because these indicators 
are amongst the most important ones from a safety point of 
view. LIT needs to improve the online recognition rates to 
close the gap to the better offline recognition performance. All 
prototypes should step closer to an operational environment to 
benefit from the potential of ASRU. Acceptable recognition 
and recognition error rates for the relevant ATC concepts need 
to be defined in risk assessment sessions. The amount of 
training data must be further increased in order to achieve 
better recognition rates given representative samples. 
Furthermore, a large amount of data must be recorded from 
operations rooms (not from labs), because ATCos speak 
differently in simulations. Finally, the recording configuration 
for training and validation or even operational use should be 
the same, e.g., same recording frequency, similar background 
noise, identical microphones, in both recordings with a face 
mask or in both without, etc. Further validations should also 
consider different workload levels of ATCos and the effect on 
ASRU performance. The European-wide agreed ontology for 
annotation of ATC utterances as used and enhanced in these 
three validation exercises should be further exploited and 
especially fully implemented by all ABSR prototypes to ease 
comparison of performance. The continuous mutual 
enhancements of the ontology in current European ASR 
projects build a basis for interoperability of systems. ASRU 
should be further developed as a potential on-the-job-training 
support, a help for incident analysis, implement callsign 
highlighting for initial pilot calls, and further safety net 
functions such as readback error detection (as already sketched 
for other ATC domains in section II.A) or plausibility checking 
of communication content. 
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