# Improving callsign recognition with air-surveillance data in air-traffic communication

Interspeech, BUT, Brno, 30.08.21 Satellite Workshop – Automatic Speech Recognition in Air Traffic Management (ASR-ATM)

Iuliia Nigmatulina, Rudolf A. Braun, Juan Zuluaga-Gomez, Petr Motlicek



#### Iuliia Nigmatulina

- PhD student at the Idiap Research Institute (since January 2021)
- Master degree in Phonetics (2013)
- Master degree in Computational Linguistics and Speech Technologies (2020)
- currently, working for ASR and ATC projects

## 1.1. ASR for Air-Traffic communication



Automatic speech recognition assistance can help. But high accuracy of the key information is crucial. **Callsign** is a unique identifier for aircraft, of which the first part is an abbreviation of airline name and the last part is a flight number of digits and letters, where letters are encoded with special words.

- SWR2689 swiss two six eight nine
- RYR1RK ryanair one romeo kilo
- RYR1SG ryanair one sierra golf

### 1.3. Radar: contextual information



2016-08-13\_10-09-06-12 BEL85A CSA3CT CSA94D EZY7905 FDB779 GMI6452 HOP4412

#### Goal:

to increase the probability of recognising those **callsigns** which are present in the air space at the moment of utterance by **dynamically** introducing **contextual information (radar)**.

Boosting callsigns = boosting **n-grams** by dynamically modifying their weights in the weighted finite-state transducer (WFST) with the **FST** composition.

Two approaches:

- Lattice rescoring to boost specific callsigns (composition after decoding).
- **Grammar modification** with boosting n-grams weights in G.fst (composition before decoding).

In both approaches, composition is done per utterance.

#### $final\_decoding\_FST = lattice\_FST \circ biased\_FST$ (1)



Biased FST with callsigns: 'ryanair one romeo kilo' and 'turkish six one heavy'.

 ${\bf G}\_biased$  is a baseline G.fst (language model) with weights adjusted to boost callsign n-grams and new callsign n-grams added.

$$HCLG\_biased = HCL \circ G\_biased$$
 (2)

HCLG\_biased is composed **on-the-fly** per utterance **during the decoding**.

| Test set                    | Num of<br>utterances | Utterances with callsigns (%) | Callsigns per<br>utterance (median) | Minutes |
|-----------------------------|----------------------|-------------------------------|-------------------------------------|---------|
| $LiveATC_mix^1$             | 610                  | 95%                           | 28                                  | 40      |
| Malorca <sup>2</sup> Prague | 872                  | 90%                           | 5                                   | 82      |
| Malorca Vienna              | 915                  | 96%                           | 19                                  | 65      |

<sup>1</sup>LiveATC.net is primarily a streaming audio network consisting of local receivers tuned to aircraft communications around the world:https://www.liveatc.net/. <sup>2</sup>The Horizon 2020 SESAR project MALORCA (Machine Learn-ing of Speech Recognition Models for Controller Assistance) ispartly funded by SESAR Joint Undertaking (Grant Number 698824):https://www.malorca-project.de/wp/.

# 1.8. Setup

- Kaldi framework <sup>3</sup>;
- CNN-TDNNF trained on approximately 1200 hours (after noise augmentation and perturbation);
- lexicon: 28410 words;
- 3-gram LM;
- *baseline*: the model without applying any boosting mechanisms.

#### **Evaluation:**

- Word Error Rate (WER) on a full utterance
- callsign WER
- callsign accuracy

<sup>&</sup>lt;sup>3</sup>Povey, D., A.Ghoshal, G.Boulianne, L.Burget, O.Glembek, N.Goel, M.Hannemann, P.Motlicek, Y.Qian, P.Schwarz, et al. (2011). "The Kaldi speech recognition toolkit". In: IEEE workshop on automatic speech recognition and understanding. CONF. IEEE Signal Processing Society.

 Table 1: Results of the boosting experiments (WER — word error rate; CWER — Callsign WER; Acc — accuracy of callsign recognition)

|                   | LiveATC_mix |      | Malorca Prague |     |      | Malorca Vienna |     |      |      |
|-------------------|-------------|------|----------------|-----|------|----------------|-----|------|------|
| Model             | WER         | CWER | Acc            | WER | CWER | Acc            | WER | CWER | Acc  |
| baseline          | 30.7        | 29.2 | 50.5           | 3.1 | 2.2  | 94.2           | 9.2 | 6.6  | 84.6 |
| lattice rescor.   | 29.5        | 23.9 | 60.8           | 3.0 | 1.0  | 97.            | 8.3 | 3.1  | 93.8 |
| G boosting        | 28.1        | 19.5 | 66.2           | 3.1 | 1.7  | 95.7           | 8.5 | 3.6  | 91.9 |
| G+lattice rescor. | 27.2        | 16.0 | 71.3           | 3.1 | 1.0  | 97.4           | 8.2 | 1.7  | 96.3 |
| ground truth      | 26.3        | 12.2 | 79.8           | 2.8 | 0.8  | 97.7           | 8.1 | 1.4  | 97.6 |

Table 2: Examples of improved callsign recognition (red — wrong; blue — correct)

| Callsign | System              | Callsign expanded                                            |
|----------|---------------------|--------------------------------------------------------------|
| STK19L   | Baseline<br>Boosted | hello sovar one nine lima<br>stobart two one nine lima       |
| RYR4TM   | Baseline<br>Boosted | ryanair four <mark>bye bye</mark><br>ryanair four tango mike |
| AFR6735  | Baseline<br>Boosted | one six zero three five<br>airfrans six seven three five     |

#### **G-boosting:**

- <sup>©</sup> biased weights before building lattices.
- © more memory consuming: keeping at least two G.fst.

#### Lattice rescoring:

- © rescoring is done after lattices are built.
- © less memory consuming; easy to implement in the online recognition with no significant latency (tested with biasing FST including 30 n-grams).

- The best results with the combination of both methods.
- The improvement is noticeable in all test sets: from 45.2 to 74.2% of relative improvement in callsign WER depending on the test set.
- Lattice rescoring can be used in **online recognition**.