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Abstract
Assistant Based Speech Recognition (ABSR) for air traffic

control is generally trained by pooling both Air Traffic
Controller (ATCO) and pilot data. In practice, this is motivated
by the fact that the proportion of pilot data is lesser compared
to ATCO while their standard language of communication is
similar. However, due to data imbalance of ATCO and pilot
and their varying acoustic conditions, the ASR performance
is usually significantly better for ATCOs than pilots. In
this paper, we propose to (1) split the ATCO and pilot data
using an automatic approach exploiting ASR transcripts, and
(2) consider ATCO and pilot ASR as two separate tasks for
Acoustic Model (AM) training. For speaker role classification
of ATCO and pilot data, a hypothesized ASR transcript is
generated with a seed model, subsequently used to classify the
speaker role based on the knowledge extracted from grammar
defined by International Civil Aviation Organization (ICAO).
This approach provides an average speaker role identification
accuracy of 83% for ATCO and pilot. Finally, we show that
training AMs separately for each task, or using a multitask
approach is well suited for this data compared to AM trained
by pooling all data.
Index Terms: assistant based speech recognition, air traffic
management, multitask acoustic model, speaker classification

1. Introduction
Past research [1, 2] as part of the MALORCA1 project focused
on i) improving ABSR accuracy for ATCOs, ii) reducing
workload for ATCOs [3], and iii) increasing efficiency [4]
of ATCOs. As part of an ongoing HAAWAII2 project, we
aim to research and develop a reliable and adaptable solution
to automatically transcribe voice commands issued by both
ATCOs and pilots.

An error resilient and accurate ASR system is critical in
the ATC domain. Current state-of-the-art technologies require
large amounts of data to train ASR systems. Goal of another
ongoing project called ATCO2 3 is to collect large set of voice
recordings of ATCOs and pilots (with a minimum effort) for
the aforementioned purpose. In order to train ASR for this

1MAchine Learning Of speech Recognition models for Controller
Assistance: http://www.malorca-project.de/wp/

2Highly Advanced Air Traffic Controller Workstation with Artificial
Intelligence Integration: https://www.haawaii.de

3Automatic collection and processing of voice data from air-traffic
communications https://www.atco2.org/

task, ATCO and pilot speech recordings are usually pooled
together [5, 6, 1] despite having a significant variability in the
data distribution (acoustic and grammatical conditions) and the
number of speakers in the data. As a result of the variability in
the data distribution, ASR performance is significantly different
if applied on ATCO or pilot speech (i.e. ATCO’s speech is
easier to recognize). Our baseline system trained by pooling
all data reveals that the absolute difference in WER for ATCO
and pilot is 9.7% (ATCO WER: 36.1%, Pilot WER: 45.8%).

In this paper, we hypothesize that instead of developing the
ASR as a single task, ATCO and pilot ASR can be considered
as two separate tasks [7]. Specifically, this paper investigates
a multitask approach to train AMs to be integrated in ASR for
ATCO and pilot. An obvious first step is to automatically split
the ATC speech communications into two tasks (i.e. obtaining
these speaker labels manually on a large dataset would be
expensive and time consuming). A common approach is to use
speaker diarization to classify the speakers in the audio [8, 9].
Although the ATCO speech is often cleaner than the pilot (as the
former communicates from a controlled acoustic environment),
the speech recordings collected in ATCO2 project using Very
High Frequency (VHF) receivers are noisy for both ATCO and
pilot channels. In such a case, the speaker diarization system
may fail to assign speaker labels (ATCO or pilot) accurately.
Thus, a speaker diarization system cannot be easily deployed to
obtain accurate speaker labels.

The vital aspect in the air traffic management (ATM)
environment is the communication between a controller and
pilot. For the smooth travel of the aircraft this communication
is well defined with a standard phraseology by ICAO [10].
Another approach to obtain the speaker class is through
leveraging the ‘ICAO’ grammar to classify an utterance as one
of the classes on the text level. Once the speaker labels (ATCO
and pilot) are available for the large data, AMs can be trained
for both controllers and pilots through different approaches. In
this study, we show that due to the poor acoustic conditions
training a single AM by pooling all data does not provide the
best performance for pilots even if the speech is constrained by
grammar. To obtain better performance accuracy, AM should
be trained separately for ATCO and pilot data or considered as
different tasks by using a multitask approach.

Section 2 provides a brief overview of a multitask ASR. The
datasets used are described in Section 3 followed by Section 4
that describes speaker role classification with text. Section 5
explains the experimental setup and the results obtained which
are followed by the conclusion in Section 6.



Figure 1: Pipeline for gathering ATCO-pilot speech data
with VHF receivers. Speech segments that do not match air-
surveillance data (i.e. prior knowledge) are discarded.

2. Related work
Previous research [11, 12, 13, 14, 15] has shown that
to compensate for limited data available in low-resourced
languages, multilingual systems are an effective way to train
ASR systems. In such a system, the output layer could be
a separate layer for each language, or a single layer shared
between all languages [15]. The Kaldi [16] toolkit provides
state-of-the-art techniques to train AMs, specifically Lattice-
Free Maximum Mutual Information (LF-MMI) [17]. Recently,
[11] showed that multilingual AM can be trained with LF-
MMI [17]. In MMI training, the cost function is given as:

FMMI =

U∑
u=1

log
p
(
x(u)|Mw(u),θ

)
p(w(u))

p (x(u)|Mden,θ)
, (1)

where x(u) is an input sequence for an utterance u, U is a set
of all utterances in the training data, Mw(u) corresponds to a
numerator graph specific to a word sequence in transcription,
Mden is a denominator graph modelling all possible sequences
which is usually a phone LM, θ is a model parameter and
p(w(u)) is a language model probability for an utterance.

However, in multitask training with separate output layers,
the cost function from Equation 1 is computed for each task
depending on the number of tasks. For T tasks, the output cost
function for each task t depends only on the utterances of that
task:

F (t)
MMI =
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u=1

log
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(
x(u)|Mt

w(u),θ
)
p(w(u))

p (x(u)|Mt
den,θ)

, (2)

where Ut is the number of utterances in a minibatch for a task t,
θ contains the shared and task-dependent parameters, Mt

w(u)

and Mt
den are task-specific numerator and denominator graphs,

respectively. For a task t, a denominator graph is built using the
task-specific phone. For each minibatch, the gradient of each
task output layer is computed and updated.

The overall cost-function is then given as a weighted sum
of all task-dependent cost-functions defined in Equation 3.

FMMI =

T∑
t=1

αtF
t
MMI , (3)

where αt is a task-dependent weight.
Although language and phone sets are the same for ATCO

and pilots, due to the variation in the acoustic conditions, we
consider them as different tasks and propose to use a multitask
approach to train AMs. We hypothesize that using a multitask
approach can lead to better ASR performance for both ATCOs
and pilots compared to a single AM trained by combining all
data.

3. Datasets
The following subsections provide an overview of the data used
in this paper.

3.1. Collection and pre-processing of VHF data

3.1.1. Data collection

To obtain ATC voice communications the following two sources
are considered: (i) open-source speech like LiveATC4, and ii)
speech collected with our own setup of VHF receivers. In
addition to speech data, the time-aligned metadata available
is used to obtain the contextual information (e.g. callsign list
for each utterance) from the OpenSky Network5 (OSN). This
process yielded 377 hours of speech data from Prague (LKPR)
and Brno (LKTB) airports from August 2020 until January 2021
for ATCO2 project.

3.1.2. Data pre-processing

Figure 1 shows the pipeline used for preparing the VHF
database. First, a seed ASR system is used to produce the
transcripts for the 377 hours of collected data. The seed model
is a ‘hybrid’ speech-to-text recognizer based on Kaldi [16]
trained with LF-MMI [17]. The neural network has six
convolutional layers followed by nine Factorized Time-Delay
Neural Network (TDNN-F) [18].

A list of callsigns retrieved from OSN is in ICAO format.
The ICAO format is composed of three characters airline code
(e.g. TVS) followed by the callsign number which consists of
digits and an additional character combination, e.g. TVS84J.
In order to use this prior knowledge, this format is transformed
into its “expanded version”. Several variants exist for a given
callsign. As illustrated in Figure 1, the callsign TVS84J can
be pronounced as "skytravel eight four juliett" or instead each
letter can be spelt out "tango victor sierra eight four juliett".

Then, an ensemble of callsigns with its variants are created.
Finally, string matching of this expanded callsign list is applied
to the automatic transcripts. The utterances in which one of the
callsigns is found are stored. This pre-processing reduced the
data from 377 hours to 66 hours.

3.2. Related ATC datasets available for training

In addition to the above data collection, ATCO2 has brought
together several air-traffic command-related databases [1, 19,
20, 21, 22, 23] from different publicly available open data
sources. The full set of databases span approximately 140 hours
of speech data that are strongly related in both phraseology and
structure seen in ATCO-pilot communications [5, 6]. These
databases were additionally augmented by adding noises that
match LiveATC audio channels, doubling the size of training
data. Since each of the seven databases had different annotation
ontologies (annotation procedure, rules, and symbols), the
transcripts had to be standardized and normalized [21, 24].

4. Speaker role classification with text
As described in Section 1, to develop a reliable and better
performing ASR for both controllers and pilots, respective
labelled speech data are required. However, in most cases, e.g.

4LiveATC.net is a streaming audio network consisting of local
receivers tuned to aircraft communications: https://www.liveatc.net/

5OpenSky Network: provides open access of real-world air traffic
control data to the public



Figure 2: Speaker role identification based on grammar for
VHF data. The same procedure is applied to other datasets
used in this paper.

such as in ATCO2 project, although large amounts of data are
collected, they do not contain speaker labels. The first task is
therefore to split the speech recordings into two classes: ATCO
and pilot. To accomplish this, we extract the information based
on the ICAO grammar to identify the speaker’s role.

ICAO defines a separate grammar for ATCOs and pilots to
enable clear communication. For instance, there are certain
phrases/commands that an ATCO should use in a specific
order. This knowledge is used to extract/identify potential
words/commands that indicate a specific role of speaker. For
example, the words such as "identified", "approved", "wind"
would most probably only be spoken by an ATCO and the words
"wilco", "maintaining", "we", "our" would probably be spoken
only by a pilot. Currently we have made a list of 25 words for
ATCO and 9 words for pilot that indicate each role. This list
was generated by manual curation and expert feedback. A list
of callsigns6 is also prepared from available airline codes.

Since this method operates at word level, manual (if
available) or automatically generated transcripts are required
for the corresponding speech recordings. In order to identify
if an utterance is spoken by an ATCO or a pilot, we check
the corresponding transcript for the conditions below: if the
callsign appears at the beginning of an utterance, this utterance
is classified as ATCO, else it is classified as a pilot. As there is
greeting at the beginning quite often, we check if the callsign
appears within the first four words. If one of the words in the
utterance is in the list of ATCO words or in the list of pilot
words, then the respective role is assigned.

Once each utterance in the training data is classified as
ATCO or pilot, we propose to train two versions of ASR. In
the first system there are two acoustic models: one for ATCO
and one for pilot. In the second system we train a multitask
network with one task as ATCO ASR and other as pilot ASR.
The procedure is illustrated in Figure 2.

4.1. Speaker Role Classification Performance

This method has been tested on manually speaker segmented
and transcribed data from two different Air Navigation Service
Providers (ANSPs) as a part of the HAAWAII project: i) NATS
for London Approach and ii) ISAVIA for Icelandic en-route. In
the first set, there are 1060 ATCO utterances and 1280 pilot
utterances. From the confusion matrix shown in Figure 3,
we can observe that this method provides a true positive rate
(TPR) of 81% (correctly classified ATCO) and true negative
rate (TNR) of 85% (correctly classified pilot). The second set
used consists of 775 ATCO utterances and 887 pilot utterances.
From the confusion matrix shown in Figure 4, we see that this
method provides a TPR of 85% and TNR of 80%.

6https://en.wikipedia.org/wiki/List_of_airline_codes
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Figure 3: Confusion matrix for speaker role identification
based on text for manually speaker segmented data for London
Approach. Total number of ATCO utterances are 1060 and the
total number of pilot utterances are 1280.
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Figure 4: Confusion matrix for speaker role identification based
on text for manually speaker segmented data for Icelandic en-
route. Total number of ATCO utterances are 775 and the total
number of pilot utterances are 887.

4.2. Error Analysis

As there exists many variants for any given callsign, checking
only for the airline code (e.g. lufthansa) is a major factor
contributing to the misclassification of ATCO as pilot. A reason
for the misclassification of pilot as ATCO is the occurrence
of callsigns at the beginning of the utterance. Analysis of
misclassification errors show that the accuracy can be improved
by i) matching the callsign spoken with its allowed variants
(e.g. LUF189AF → lufthansa one eight nine alfa foxtrot, one
eight nine alfa foxtrot, etc) and ii) using the context prior to the
callsigns (e.g. the pilot may mention the place of the control
they want to communicate followed by the callsign). We will
consider applying the aforementioned improvements as a part
of our future work.

5. Experiments
For all our experiments, conventional biphone Convolutional
Neural Network (CNN) [25] + TDNN-F [18] based acoustic
models trained with Kaldi [16] toolkit (i.e. nnet3 model
architecture) is used. AMs are trained with the LF-MMI [17]
training framework considered to produce state-of-the-art
performance for hybrid ASR systems. In all the experiments, 3-
fold speed perturbation [26] and i-vectors are used. The multi-
task training script used can be found in Kaldi [16]7. The value
of the task dependent weight αt used in our experiments is 0.5.
Language model (LM) is trained with all the manual transcripts
available from datasets described in Section 3.2 and used for all

7egs/babel multilang/s5d/local/chain2/run_tdnn.sh



Table 1: WER comparison for AMs trained with data from other
ATC datasets and tested on LiveATC ATCO and pilot test sets.

Model WER %

ATCO test Pilot test

Clean 36.9 47.7
Noise 31.3 41.1

Combined 36.1 45.8
Multitask 31.6 41.1

Table 2: WER comparison for models trained with only the data
collected from VHF receivers and tested on LiveATC ATCO and
pilot test sets.

Model WER %

ATCO test Pilot test

VHF ATCO 43.2 51.6
VHF Pilot 40.3 45
Combined 46 50
Multitask 38.2 44

the experiments.
The performance of different models is evaluated on

LiveATC test set with the Word Error Rate (WER) metric which
is based on the Levenshtein distance at the word level. The total
duration of the test set is 1h 50 mins. The set is split into two
subsets: ATCO set (52 mins) and Pilot set (58 mins).

In each group of experiments, results are given for i) AM
trained for each task separately, ii) AM trained by combining
all data and iii) AM trained with multitask learning.

5.1. Experiments on ATC databases

In this setup, we use data from the ATC databases mentioned
in Section 3.2 as Clean data and its noise augmented part as
Noise data. As shown in Table 1, both ATCO and pilot test
sets provide better performance when the model is trained with
Noise data compared to the model trained with only Clean data.
This shows that the noise augmented version of the clean data
matches with the test sets much better than the clean version.
Moreover, the Combined system performs significantly worse
than the Noise system. This shows that using the Clean dataset
in fact hurts ASR performance. This is one of the reasons
why the multitask system performs only on par with the Noise
system. Therefore only the noise augmented data is used for
training in the next experiments.

5.2. Experiments on VHF data

Results in Table 2 are presented for AMs trained with only
the VHF data. Applying speaker role identification for the
pre-processed data (66 h) yields 43 h for ATCO and 23 h for
Pilot. Similar to Table 1, the results in Table 2 show that
using multitask learning instead of training AM by combining
all the data provides better ASR performance. Furthermore,
the results reveal that due the low amount of data, multitask
learning outperforms its single task counterparts.

5.3. Experiments on VHF+other ATC datasets

In this subsection we report results with models trained
from both VHF and ATC datasets used in the previous two

Table 3: WER comparison for models trained with all ATCO
data from all databases and all pilot data with noise augmented
data

Model WER %

ATCO test Pilot test

ATCO 30.3 43.2
Pilot 32.8 40.3

Combined 31.2 41.3
Multitask 31.9 41.3

experiments. By investigating the ATC databases used in
Section 5.1, we discovered that some of the datasets also contain
pilot speech. Since no speaker role labels are available for
these sets, we applied the proposed method to split the noise
augmented speech as ATCO or pilot and combined them with
their respective classes of the VHF data. This provided 123h
of data for ATCO and 80h for pilot. The results in Table 3
show that training AMs for each task separately performs
relatively better by 2.9% for ATCO and 2.4% for pilot than
using the Combined system. This suggests that when more
data is available, using our grammar-based approach to obtain
speaker role information to train separate ATCO and pilot
ASR is better than the Combined approach. The Multitask
system does not perform better than the Combined; suggesting a
negative transfer when considering ATCO and pilot tasks. This
is expected as the ATC data dominates in size during training.

6. Conclusions
In this work, we compared different types of training AMs
with state-of-the-art LF-MMI framework for ATCO and pilot
speech recordings. The developed ASR systems were evaluated
separately on ATCO and pilot test sets built from LiveATC.
Due to the noisy nature of both ATCO and pilot test sets,
AM trained with only noise augmented speech data boosts
the ASR performance. We proposed a simple grammar based
approach to identify speaker roles automatically and train
acoustic models either by speaker role or in a multitask fashion.
The results show that multitask training approach outperforms
other training methods when limited training data is available.
When sufficient data is available, we show that training AMs
separately provides better ASR performance for both ATCO
and pilot compared to the model trained by combining all data.
Relative improvements of 3.2% for the ATCO set and 1.9% for
the pilot set were obtained.
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